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Abstract. Structural MRI provides information regarding the presence of early-stage Alzheimer Disease (AD) and several MRI findings are associated with the rate of conversion from mild cognitive impairment e OUREEES

(MCI) to AD. However, the extent of the multivariate relationship between structural MRI findings and the rate of MCI to AD conversion has not been fully studied. The objective of this work was the exploration of GOBIERNO

different machine learning strategies (LASSO, BSWIMS, BeSS, and feature filters) to build MRI-based multivariate survival models to study MRI association with MCI to clinical AD conversion. 346 MRI-related fea- e | DE LA REPUBL'CA
tures, where the location-paired left and right measurements were described by mean and absolute difference, of 442 ADNI subjects were used to construct cross-validated Cox multivariate survival models. The e

multivariate Cox model with the best concordance index (c-index) was built with BSWIMS features (c-index 0.64 95% Cl: 0.61-0.67). Finally, we report an eight MRI-feature model that described risk factors for DEL ECUADOR
early MCI to AD conversion. We presented survival models that were able to separate the stable MCI subjects from those that converted to AD
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» According to Alzheimer's Disease International, 60% to 70% of 50 million cases of dementia are Alzheimer disease (AD) [1]. cat Wap

» Between 2000 and 2015 the number of deaths caused by the disease has increased by 123% [2].
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» The objective of this work was the evaluation of seven different machine learning strategies to build MRI-based survival o WWMWWMWMMWMM mmmmmmﬂm MWM I
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FIG 4. A heat map representation of the features associated with MCI to AD conversion. The figure shows the ten features selected by all the 4 methods at least in the half of the
terations (horizontal axis) and subjects on the vertical axis. (F1) Mean volume (CP) of entorhinal HR=0.63(0.50, 0.80), (F2) mean cortical thickness SD of Bankssts HR=1.60(1.20,
2.12), (F3) APOE4 HR=1.74(1.40, 2.17), (F4) mean volume (WMP) of amygdala HR=0.88(0.69, 1.13), (F5) mean cortical thickness AVG of Bankssts HR=0.76(0.60, 0.97), (F6)
mean volume (CP) of inferior temporal HR=0.79(0.62, 1.00), (F7) absolute difference cortical thickness AVG of middle temporal HR=1.38(1.07, 1.78), (F8) absolute difference of
cortical thickness AVG of pars opercularis HR=1.46(1.09, 1.94), (F9) absolute difference cortical thickness AVG of inferior pariental HR=1.33(1.04, 1.70), (F10) mean cortical thick-

3 3 2 ness SD of Rostral middle frontal HR=0.64(0.50, 0.81)

mean and absolute difference
structural MRI right-left measures
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patients

187 AD converters
255 stable MCI

, Many of the characteristics that have been selected in our study have been already presented asFliggpksetoassociated with MCI to AD conversion [3]—[5].

'

‘MCI stable subjects, the difference In days between the baseline obser-
vation and the last follow-up date was calculated

The reduction of mean volume (CP) of entorhinal as a factor increases the risk of conversion validating what was presented in previous studies [4]-[5]

‘All the participants of the TADPOLE challenge.

1737 individuals from the ADNI3 database. The atrophy of mean volume (WMP) of the amygdala is related to APOE and therefore with the highest risk

: .
-873 patients that were either normal or already had suffered the Subject MCIto AD, _the baseline da.te and the date of change, , Mean cortical thickness of AVG and SD of Bankssts suggest the lack of homogeneity as risky, which differs in the observations presented in other studies [7] where
| | +332 MRI-characteristics left and right are described, by the mean and asymmetry is mentioned as a risk factor
conversion of MCI to AD at the baseline absolute differences. » Inthe same study [7] they observe but do not discuss the asymmetry of other structures; in our case, we find again that the increase in the asymmetry in the absolute

size of the cortical thickness of the temporal and cortical thickness of pars opercularis increases the risk of conversion

437 MCI subjects who did not have structural MRI information. Th - v val cuetural ME] | N
+447 people with MCI status and MRI at the baseline < femaining Ermpty values on structure MEasures were impu » Finally, the atrophy in the mean volume of inferior temporal increases the risk of conversion, as mentioned in previous studies [8].

ed by the nearest neighbor strategy.

All the models shown an acceptable accuracy compared to recent classification studies [9], this considering that our work also gives information about the hazard of
every selected feature.

i i w» Our ?nal?/f,ls was carried out only with the patients belonging to ADNI cohort, which if there are changes in the group of people to be evaluated, which may affect the
resuits shown.

We presented a comprehensive analysis of survival models that were able to separate the stable MCI subjects from those that convert-

ed to AD, indicating that machine learning approaches are very useful in discovering and analyzing the MRI features that are associated
BSWIMS (Model 1) chose on all the times, mean of volume of amygdala and entorhinal and mean cortical Cox wnth BSWnMS

¥ thickness average of bankssts s B8 s IR with the conversion of MCI subjects to AD.

CoxNet (Model 2) selected APOE4, mean cortical thickness AVG of Bankssts and the mean volume (CP) of en-
torhinal on all iterations

Model 2 was the model with the best mean on the c-index values on the wrappers section

BeSS (Model 3R selected APOE4, mean cortical thickness standard deviation of bankssts and mean volume
(cortical parcellation) of entorhinal

Filter methods used the same features extracted by the last three methods to build Cox Models
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Univariate Cox selected 54 elements on all iterations, some of them were: APOE4, mean cortical thickness AVG
of Parahippocampal, cortical thickness AVG and volume (CP) of Pars Opercularis.

Cox Model built with BSWIMS Is the model with the best c-index on Risk and Follow-up times. Model 4 showed

" arisk c-index of 0.74{0.71-0.76} and a log rank test pvalue of 8.10e-15. Figure 3. 6 \ mb;%at .
u | 5 g
» Analysis of the set of selected features across methods and holdout repetitions indicated that 10 features were T 5L 1 T I ) ’
common on 50% of the sets - i) ) | | - L
A refit process was carried out with these ten features. After this, we computed the hazard ratios (HR) with
" their corresponding 95% confidence intervals (Cl). Figure 4 shows the heatmap representation of the features Fig. 3. Kaplan Meier Curves of Multivariate Cox model built with the features ol ] 1 ! ! !
and shows information about HR. found with BSWiMS method (Model 7). Risk c-index of 0.74{0.71-0.76}. C e _ Tme | .
Number at risk Number at risk Number at risk
c-index Risk c-index Follow LogRank Feature size ; C N ; (e) - [rreEmr—— (f) - T ‘
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{95% CI} up {95% CI} pvalue { j { j Jaccard Index N . |
BSWiMS 0.60 {0.57-0.62%  0.81 {0.79-0.83}  1.58e-14  0.67{0.63-0.72}  0.73{0.68-0.78} 12.75 : 0.34
Coxnet 0.61 {0.58-0.64} 0.84 {0.82-0.86} 3.33e-16 0.68{0.64-0.72}  0.73{0.68-0.78} 24.40;0.31 ¢ ° : : : a
BeSS 0.60 {0.57-0.63} 0.63 {0.60-0.66} 1.99¢-10 0.62{0.58-0.67}  0.68{0.63-0.73} 52.85;0.21
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Cox.BSWiMS  0.74{0.71-0.76}  0.74{0.71-0.76}  8.10e-1
Cox.CoxNet 0.72{0.69-0.74}  0.72{0.69-0.74}  3.73e-1
Cox.BeSS 0.63{0.60-0.66}  0.63{0.60-0.66}  1.99e-1
Cox.UniCox  0.67{0.64-0.70}%  0.67{0.64-0.70}  6.3%¢-1
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Fig. 5. Kaplan Meler (KM) and ROC curves for wrappers/embedded section. CoxNet showed the best accuracy on the classification and the best c-index on Risk and Follow-up
TABLE 1.. Survival and Classification stats for every model. For each model the concordance Index (c-index) for Risk and Follow-up Times were calculated on the test results. The times. (&) Model T BSWIMS KM (b) CoxNex KM (c) BeSS KM (d) BSWIMS ROC (e) CoxNet ROC (f) BeSS ROC.
Log Rank Test was computed by the identified low/high risk patients.
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